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Abstract: In the presence of loss and gain, the coupled mode equation
on describing the mode hybridization of various waveguidesor cavities,
or cavities coupled to waveguides becomes intrinsically non-Hermitian.
In such non-Hermitian waveguides, the standard coupled mode theory
fails. We generalize the coupled mode theory with a properlydefined
inner product based on reaction conservation. We apply our theory to the
non-Hermitian parity-time symmetric waveguides, and obtain excellent
agreement with results obtained by finite element fullwave simulations. The
theory presented here is typically formulated in space to study coupling
between waveguides, which can be transformed into time domain by
proper reformulation to study coupling between non-Hermitian resonators.
Our theory has the strength of studying non-Hermitian optical systems
with inclusion of the full vector fields, thus is useful to study and design
non-Hermitian devices that support asymmetric and even nonreciprocal
light propagations.
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1. Introduction

Coupled mode theory (CMT) can be traced back to 3 decades ago [1], and has been an in-
dispensable tool of analyzing and designing waveguides, resonators, couplers or many other
devices from microwave frequency [2–4] to optical frequency [5–13], in both time and space
domain. CMT has its mathematical root of variational principle [14], which yields a stationary
value for target physical quantities of the coupled opticalsystems, such as propagation constant,
eigen-frequencies, or impedance and so on. CMT was inventedto study parametric amplifiers,
oscillators, and frequency converters in microwaves [3], with a rigorous derivation given by
Schelkunoff using mode expansion [1], and Haus using a variational principle [2]. The CMT
for optical waveguides was developed by many authors [4–6],and further refined by Hardy et
al., using non-orthogonal coupled mode formulation (NCMT)[7–9], in contrast to the orthog-
onal coupled mode theory (OCMT). Subsequently, temporal coupled mode theory was applied
to study coupling among optical resonators, or resonators coupled to waveguides [11–13].

It can be proved that CMT is exactly equivalent to Maxwell’s equations, as long as a com-
plete set of modes is taken in the mode expansion in constructing the coupled mode equations.
In most cases, we only need a few modes (usually two) in the mode expansion, because all



the other modes, for instance, the continuum modes in waveguides, do not couple to the tar-
get mode that we are interested in. Even though CMT remains approximate in the truncated
mode set, yet insightful and often accurate description of target quantities of a coupled sys-
tem can be obtained. By excluding those irrelevant modes, CMT for a two-modes structure
can be reduced into a form of 2×2 matrix, which is a classic model and has been extensively
used in describing many different coupled physical systems, such as two coupled mechanical
oscillators, light (single-mode ) matter (single atom) interaction in Jaynes-Cummings model,
two coupled resonators in electric circuits and so on. Mostly, for a lossless system, the energy
flow from one mode/oscillator/atom to another mode/oscillator/photon is reciprocal, namely,
the energy will flow back in a ’reciprocal’ way as ’time’ is reversed, which renders the coupled
system Hermitian, or the transition matrix of the coupled system as a Hermitian Matrix.

The aforementioned formulations of CMT rely on a definite andconserved optical power of
the whole coupled system for either OCMT or NCMT, which essentially by default selects a
scheme of complex inner product. However, for coupled optical parity-time (PT )-symmetric
structures [15–25] the total integrated power is not a conserved quantity, especially in the bro-
ken phase after the exceptional point. Therefore, the standard CMT fails in such non-Hermitian
systems [15]. In [15], the authors formulate a CMT to studying PT -symmetric structures
through a Lagrangian treatment, in which the vector opticalfield is approximate as a scalar field
envelope. In this work, we provide a conceptually simple model to construct general coupled
mode theory (GCMT) using reaction conservation, a well-known concept in electromagnetism.
The GCMT is capable of capturing the vectorial nature of the optical fields. Particularly, us-
ing a scalar inner product, we prove that the Maxwell equation remains self-adjoint, even in the
presence of loss and gain. We further construct GCMT based onperturbation. In the application
of GCMT, we studyPT -symmetric waveguides with balanced losses and gain. The predic-
tion of our theory shows excellent agreement with results obtained by the fullwave simulation
(COMSOL).

The paper is organized as follows. In Section 2, we give the foundation of our general coupled
theory based on reaction concept. Secondly, we discuss the procedures of constructing GCMT.
In Section 3, we study the mode dispersion ofPT -symmetric waveguides using GCMT, and
compare it with conventional coupled mode theory. Finally,Section 4 concludes the paper.

2. General couple mode theory

2.1. Reaction concept and self-adjointness

The reaction is a physical observable introduced by Rumsey [26] to measure the reaction be-
tween sourcesSSSa andSSSb, defined as follows,

(FFFb,SSSa) = 〈FFFb,σSSSa〉 (1)

whereFFFb is the field generated by sourceSSSb. As seen from Eq. (1), the inner-product(·|·) is
defined for the vector field, and equals〈·σ ·〉, where〈φφφ(rrr)|ψψψ(rrr)〉 =

∫

drφφφT (rrr)ψψψ(rrr) for two
column vector fieldsφφφ (rrr), ψψψ(rrr). It is important to point out that there is no complex conjugate
operation over the fields, therefore the relation〈φφφ (rrr)|ψψψ(rrr)〉 = 〈ψψψ(rrr)|φφφ(rrr)〉 holds. Denoting
the fieldFFF = [EEE,HHH]T , andSSS = [JJJ,MMM]T , JJJ (MMM) electric (magnetic) current density. The reaction
given in Eq. (1) can be explicitly given by

(FFFb,SSSa) =
∫

dr
[

EEEb HHHb
]

σ
[

JJJa

MMMa

]

(2)

where the metric tensorσ =

(

1̄11 0̄00
0̄00 −1̄11

)

, 1̄11 denotes the identity matrix,̄000 the zero matrix.

The link between the sourceSSS and the associated vector fieldsFFF is given by the Maxwell’s



equations,
L̄LLFFF = W̄WWSSS, (3)

whereL̄LL =

(

∇× ik0µ̄µµ r
−ik0ε̄εεr ∇×

)

, W̄WW =

(

0̄00 −1̄11
1̄11 0̄00

)

.

Based on the reaction concept, the reciprocity theorem can be given

(FFFa,SSSb) = (SSSa,FFFb), (4)

which states that the response of one source to the external field induced by another source
equals to the response of the second source to the field given by the first source. Equation (4)
imposes certain constraints on the material parameters as given by ε̄εε r(rrr) = ε̄εεT

r (rrr) andµ̄µµ r(rrr) =
µ̄µµT

r (rrr). Such medium is called reciprocal medium in the literature,and could be lossy or active,
as long as reciprocal conditions are fulfilled. We can reformulate Eq. (3) in a matrix form as
follows,

H̄HHFFF = SSS, (5)

whereH̄HH = W̄WW−1L̄LL. For any reciprocal medium, we find that for any two vector fieldsψψψ , φφφ , the
following relation holds:

(ψψψ , H̄HHφφφ ) = (H̄HHψψψ ,φφφ). (6)

Equation (6) means that the operatorH̄HH is self-adjoint in the scheme of the inner-product given
by Eq. (1), which has relevant consequences and implications that we intend to discuss. Firstly,
the self-adjointness of the operatorH̄HH and the reaction for defining reciprocity share the same
definition on the inner-product. Moreover, the self-adjointness ofH̄HH is equivalent to reciprocity
theorem. In other words, the reciprocal conditions on the material parameters are necessary
and sufficient condition both to self-adjointness ofH̄HH, and to reciprocity theorem. Secondly, the
self-adjointness of the Hamiltonian̄HHH guarantees that the underlying space associated with the
operatorH̄HH is complete, despite the existence of losses or gain in the material parameters. Lastly,
the left eigenvector space (bra space〈·|) and the right eigenvector space (ket space|·〉) are
closely related with each other for self-adjoint operator [27], namely, one determines the other,
and vice versa. For complex inner-product, the self-adjoint operator is conventionally called
as Hermitian operator. The matrix form of right and left eigenvectors are complex conjugate
and transpose to each other, i.e.,|·〉 = [(〈·|)T ]∗. As for a scalar inner-product, the matrix form
of self-adjoint operator is symmetric, hence the left and right eigenvectors has the relation of
|·〉= (〈·|)T .

2.2. Dimension reduction: a non self-adjoint formulation for waveguide problems based on
variational principles

It is important to realize that the self-adjointness of the Maxwell’s equations in reciprocal
medium, as given in Eq. (6), is valid for the inner-product defined in 3D space. As for the
development of GCMT or the modal solver based on variationalprinciple for waveguide prob-
lems, it is necessary to reduce the 3D formulation into its 2Dcounterpart.

Considering an infinitely long waveguide, the waveguide modes of the original problem
are given byφφφ = [eee(rrr),hhh(rrr)]T , whereeee(rrr) = eee(x,y,β )ei(ωt−β z), hhh(rrr) = hhh(x,y,β )ei(ωt−β z).
The adjoint fields are given byψψψ = [eeea(rrr),hhha(rrr)]T , whereeeea(rrr) = eeea(x,y)ei(ωt+β z), hhha(rrr) =
hhha(x,y)ei(ωt+β z). We choose counter-propagating modes with the sameβ as our mode sets
φφφ = [eee+,hhh+]T ei(ωt−β z), and ψψψ = [eee−,hhh−]T ei(ωt+β z) respectively. The relation between the
fields propagating in+z and−z direction is given byeee+ = {ex,ey,ez}, hhh+ = {hx,hy,hz},
eee− = {ex,ey,−ez}, hhh− = {−hx,−hy,hz}. The particular choice of the mode sets [28–31] is
relevant: (1) it is necessary to get a functional of coupled modes that is independent ofz, mean-
ing the termse±iβ z in the inner-product between the modes setsφφφ andψψψ are canceled; (2) the



mode pair of counter-propagating modes has a definite relation, henceφφφ can be deduced from
ψψψ , and vice versa. It is easy to get thez-independent and source-free wave-equation for the
mode profilesφφφ 2d = [eee+,hhh+] of the original problem as follows

H̄HH2dφφφ 2d = 0 (7)

where H̄HH2d =

(

∇t ×−iβ zzz× ik0µ̄µµ r
−ik0ε̄εε r ∇t ×−iβ zzz×

)

, and ε̄εεa
r =

(

εtt
r εtz

r
εzt

r εzz
r

)

, and µ̄µµa
r =

(

µ tt
r µ tz

r
µ zt

r µ zz
r

)

, andεtt
r (µ tt

r ) denotes the 2×2 in-plane components of electric (magnetic) di-

electric function,∇t = xxx ∂
∂x +yyy ∂

∂y . From Eq. (7), and the predefined modes ofφφφ andψψψ , one can

also obtain the adjoint system from the original ones (H̄HH2d), as given by

H̄HHa
2dψψψ2d = 0 (8)

whereψψψ2d = [eee−,hhh−], H̄HH
a
2d =

(

∇t ×+iβ zzz× ik0µ̄µµa
r

−ik0ε̄εεa
r ∇t ×+iβ zzz×

)

, ε̄εεa
r =

(

εtt
r −εtz

r
−εzt

r εzz
r

)

, and

µ̄µµa
r =

(

µ tt
r −µ tz

r
−µ zt

r µ zz
r

)

. It is easy to find that the following relation holds

(ψψψ2d , H̄HH2dφφφ 2d) = 0= (H̄HH
a
2dψψψ2d ,φφφ2d), (9)

where the inner-product is carried out over 2D computational domain, i.e., transverse plane of
the waveguides. As regards to the comparison between 2D formula (Eq. (9)) and 3D formula
(Eq. (6)), a few remarks may deserve attentions. Firstly, the operatorHHH2d with inner product
defined over 2D domain is not self-adjoint [30–32], e.g.,H̄HHa

2d 6= H̄HH2d , for reciprocal medium.
Secondly, for self-adjoint system, the adjoint system and the original system can be treated
separately. As for a non self-adjoint electromagnetic problem [28], one need to solve original
problem, as well as its adjoint problem simultaneously to provide a complete but biorthogonal
mode sets to construct the coupled mode equations, or any other modal solver based on vari-
ational principles, e.g., method of moments (MoM) and finiteelement method (FEM). As for
Eq. (9), it is necessary to obtain a unified variational form that contains contribution from both
HHHa

2d andHHH2d . The explicit unified variational form for eigen-mode problem of waveguides is
the following,

Y = (δψψψ2d , H̄HH2dφφφ 2d)+ (H̄HH
a
2dψψψ2d ,δφφφ 2d) = 0. (10)

which is the first variation, e.g.,δψψψ2d andδφφφ2d , to the functionalI = (ψψψ2d , H̄HH2dφφφ2d). Accord-
ing to variational principle, Eq. (10) indicates simultaneously the optimal solution ofψψψ2d and
φφφ 2d to Eq. (7) and Eq. (8), as long as the functionalI is stationary for anyψψψ2d andφφφ2d . Thirdly,
the mode set (ψψψ2d) of the adjoint system is selected as the countering propagating modes of the
original system (φφφ2d). As such, the total degree of freedom of unknows is halved [30]. We note
that GCMT can also be applied to bianisotropic waveguides [33].

2.3. Procedures of constructing GCMT for waveguide problem based on perturbation

Given a perturbation to the adjoint system̄HHHa
2d by ∆H̄HH, i.e., H̄HH#

2d = H̄HHa
2d +∆H̄HH, we shall have

the relation according to linear response of Maxwell’s equations, (ψψψ2d , H̄HH2dφφφ 2d) = ([H̄HH#
−

∆H̄HH]ψψψ2d ,φφφ2d), which can be reformulated as

(ψψψ2d, H̄HH2dφφφ2d)− (H̄HH#
2dψψψ2d,φφφ 2d) = (−∆H̄HHψψψ2d ,φφφ2d). (11)



Perturbation implies that∆H̄HH is small, hence(−∆H̄HHψψψ ,φφφ) can be approximately taken as 0,
which leads to

(ψψψ2d , H̄HH2dφφφ 2d)− (H̄HH
#
2dψψψ2d ,φφφ2d) = 0. (12)

Equation (12) gives the connection between the original system and the perturbed adjoint sys-
tem via the reaction conversation under a small perturbation ∆H̄HH, and can be transcribed into a
set of coupled mode equations, which is essentially the GCMTproposed in this paper. Firstly,
we use normalized fieldseee(rrr) = eee+ei(ωt−β z), hhh(rrr) = hhh+ei(ωt−β z) propagating in the+z direc-
tion, satisfying Maxwell equations

∇t × eee+0,i − iβ0,izzz× eee+0,i =−ik0µ̄µµ0
r hhh+0,i, (13a)

∇t × hhh+0,i − iβ0,izzz× hhh+0,i = ik0ε̄εε0
r eee+0,i, (13b)

where the subscripts 0 andi stand for no perturbation case and mode labels, respectively.
We consider there is a small perturbation ofε. The idea is that the fields under perturbed sys-

tem can be approximated by a linear combination of the unperturbated fields of the adjoint sys-
tems. Therefore, the fields of perturbed system could be written aseee′(rrr) = (Σ ja jeee−0, j)e

i(ωt+β z),

hhh′(rrr) = (Σ ja jhhh
−
0, j)e

i(ωt+β z) and satisfy

∇t ×Σ ja jeee
−
0, j + iβ zzz×Σ ja jeee

−
0, j =−ik0µ̄µµ rΣ ja jhhh

−
0, j, (14a)

∇t ×Σ ja jhhh
−
0, j + iβ zzz×Σ ja jhhh

−
0, j = ik0ε̄εεrΣ ja jeee

−
0, j, (14b)

In equivalence with Eq. (12), we derive GCMT from perturbation as follows,
∫∫

{Eq. (13a) ·Σ ja jhhh
−
0, j −Eq. (14b) · eee+0,i +Eq. (13b) ·Σ ja jeee

−
0, j −Eq. (14a) ·hhh+0,i}dxdy (15)

In case that a small perturbation is present in the imaginarypart of ε̄εε r, i.e. ε̄εε r = ε̄εε0
r + i∆ε(x,y),

the formula resulted from Eq. (15) can be simplified as follows,

Σ ja j[ki j + bi j − i(β −β0,i)pi j] = 0 (16)

wherebi j =
∫∫

{∇t · (hhh
+
0,i × eee−0, j)−∇t · (hhh

−
0, j × eee+0,i)}dxdy, pi j =

∫∫

{zzz · (eee−0, j × hhh+0,i)− zzz · (eee+0,i ×

hhh−0, j)}dxdy, ki j = ik0
∫∫

∆ε(x,y)eee−0, j · eee+0,idxdy. For ∆ε(x,y) = 0, we shall have the following
relation

bi j = i
(

β0, j −β0,i
)

pi j. (17)

Insertingbi j back into Eq. (16) yields

Σ ja j(β −β0, j)pi j = Σ ja jki j. (18)

Equation (18) is the matrix form of GCMT proposed in this paper, which will be used to study
Hermitian and non-Hermitian waveguide with some concrete examples in the following section.

It is worthy to write down the CMT derived from conventional CMT (CCMT) [8] for com-
parison. To this end, Eq. (12) shall be reformulated as

(ψψψ∗
2d , H̄HHφφφ 2d)− ((H̄HH

#ψψψ2d)
∗,φφφ 2d) = 0, (19)

where∗ indicates the operation of complex conjugation, and the metric tensor is modified as

σ =

(

1̄11 0̄00
0̄00 1̄11

)

accordingly. Following the same procedure, we have

Σ ja j(β ∗−β ∗
0, j)pi j = Σ ja jki j. (20)
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Fig. 1. Real part and imaginary part of effective mode indices (ne f f ) versus∆ε using GCMT
(a,b) and CCMT (c,d). Gray solid lines are calculated from fullwave simulation. Inset shows
the schematic diagram of two coupled core layers with loss and gain, surrounded by air.
Dimensions areh = 0.2λ0, w = 0.3λ0, d = 0.03λ0 (blue solid circles, green open circles)
or 0.05λ0 (red diamonds, magenta crosses),ε0 = 10.λ0 is vacuum wavelength.

wherebi j =
∫∫

{∇t · (hhh
+
0,i × eee∗0, j)+∇t · (hhh

∗
0, j × eee+0,i)}dxdy, pi j =

∫∫

{zzz · (eee∗0, j × hhh+0,i)+ zzz · (eee+0,i ×

hhh∗0, j)}dxdy, ki j = ik0
∫∫

∆ε(x,y)eee∗0, j · eee+0,idxdy. In this case, for∆ε(x,y) = 0, bi j + fi j =

i
(

β ∗
0, j −β0,i

)

pi j where fi j =−ik0
∫∫

{(µ̄µµr,0+ µ̄µµT,∗
r,0 )h

∗
j ·h

+
i +(ε̄εεr,0+ ε̄εεT,∗

r,0 )e
∗
j ·e

+
i }dxdy. We will

show in the next section that, CCMT works fine for Hermitian waveguides, but not for the case
where non-Hermitian waveguides are considered.

3. Results and Discussions

In the following, we use Eq. (18) to analyze dispersion relations inPT -symmetric waveg-
uides as discussed in [15, 16]. The structure ofPT -symmetric waveguides is shown by the
inset of Fig. 1. It is composed of two waveguides with identical geometry dimensions placed
close to each other. It is well known that the pair of an even and odd super mode is formed in
this case. Phase transitions can be observed as the magnitude of the imaginary part of̄εεε r of two
waveguides, i.e.,̄εεεr = ε̄εεr,0+ i∆ε in core layer 1 and̄εεεr = ε̄εεr,0− i∆ε in core layer 2, crosses a crit-
ical value as shown by the inset. This is used to create a symmetric index guiding profile and an
anti-symmetric gain-loss profile. The gain/loss perturbation creates coupling between the odd
and even mode pair so that the effective index of the two supermodes becomes closer and closer
until an exceptional point where they become identical. Beyond the exceptional point, the real
part of ne f f remains the same, but the imaginary part ofne f f of two modes break into two
branches. When two waveguides are put more closer, the modesof two waveguides coupled
more intensely so the even and odd supermodes have larger separation in the effective mode
index. Therefore, it needs larger gain/loss parameter to get to the exceptional point. These are
confirmed by COMSOL where two different gap size between two core layers are considered,
as shown by the gray lines of Fig. 1.

Then we apply our theory to predict the dispersion curves of the above mentioned structures.
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Fig. 2. Real part ofne f f versus∆ε. Gray solid lines are calculated from fullwave sim-
ulations. Blue open circles (red crosses) represent results derived by GCMT(CCMT).
d = 0.03λ0. Other parameters are the same as Fig. 1.

In this case, Eq. (18) is an eigenvalue problem with the following form
[

β0,1p11− ik11 β0,2p12− ik12

β0,1p21− ik21 β0,2p22− ik22

][

a1

a2

]

= β
[

p11 p12

p21 p22

][

a1

a2

]

(21)

wherepi j andki j are defined in previous section. As a starting point, we use the mode fields
provided by COMSOL at∆ε = 0. Propagation constants as well as eigenvectors are updated
according to Eq. (21) using mode fields at this point. Next, in-plane fields are recalculated
using updated eigenvectors and used for deriving propagation constants as well as eigenvectors
in the next step. By choosing a small step, full dispersion relations as a function of∆ε can
be resolved. The solid symbols in Fig. 1(a) and 1(b) show effective mode indices given by
ne f f = β/k0 derived by our method, where they match results from COMSOL remarkably
well. For comparison, we also show the results obtained by CCMT in Fig. 1(c) and 1(d). In this
case Eq. (21) becomes

[

β ∗
0,1p11− ik11 β ∗

0,2p12− ik12

β ∗
0,1p21− ik21 β ∗

0,2p22− ik22

][

a1

a2

]

= β ∗

[

p11 p12

p21 p22

][

a1

a2

]

. (22)

It is clear that in this case CCMT fails to capture the major feature ofPT -symmetric waveg-
uides. However, instead of perturbinḡεεεr in the imaginary part, CCMT works fine for the case
when ε̄εεr is present the real part. Red crosses in Fig. 2(a) shows the case that∆ε is real and
increases with identical sign in both core layers. In this case, the separation between two mode
indices remain the same but their absolute values increasesas∆ε increases. Red crosses in Fig.
2(b) shows the case that∆ε is real but increases with opposite sign in two core layers. In this
case, two mode indices are further separated as∆ε increases, indicating anti-crossing features.
In both figures, only real part ofne f f is shown since imaginary part ofne f f in all cases is zero.
Dispersion relations calculated according to GCMT are alsoshown in Fig. 2 with blue open
circles. Clearly, GCMT developed in this work gives the sameresults as CCMT does, agreeing
well with full wave simulations given by gray lines shown in Fig. 2.



4. Conclusions

From reaction conservation, we provide a solid foundation for the construction of general cou-
ple mode theory that can handle mode hybridization in non-Hermitian waveguides. Using a
scalar inner product, we establish the equivalence betweenthe self-adjointness of Maxwell’s
equations and reaction conservation. As for waveguide problems, the dimension of the self-
adjoint relation need to be reduced from 3D to 2D, in which theformula turns out be non self-
adjoint problem. Using coutering-propagating modes as thedual space of 2D non self-adjoint
waveguide problem, the eigenmodes can be resolved from variational principles. Importantly,
the 2D non self-adjoint relation can be elaborated into a setof coupled mode equation. We give
a detailed discussion of the dimensional reduction for waveguide problem that relies on vari-
ational principle. We then provide a procedure of constructing GCMT for waveguide problem
based on perturbation, which yields a set a coupled mode equations. To illustrate the effec-
tiveness of GCMT developed in this work, it is applied to study the phase transition of coupled
PT -symmetric structures and shows excellent agreement with fullwave simulations. For com-
parison, results derived from CCMT are also shown, which fails to capture the major features
of PT -waveguides. Our theory provide direct analysis of eigenvalues of PT -symmetric
structures with in-cooperation of full vector fields. Thus it might be useful to study and design
non-Hermitian devices that support asymmetric and even nonreciprocal light propagation.
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