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Abstract: In the presence of loss and gain, the coupled mode equation
on describing the mode hybridization of various waveguidegavities,
or cavities coupled to waveguides becomes intrinsicallp-Hermitian.
In such non-Hermitian waveguides, the standard coupledentbdory
fails. We generalize the coupled mode theory with a propedfined
inner product based on reaction conservation. We applytwory to the
non-Hermitian parity-time symmetric waveguides, and mbtexcellent
agreement with results obtained by finite element fullwaneitations. The
theory presented here is typically formulated in space tolysttoupling
between waveguides, which can be transformed into time dorbg
proper reformulation to study coupling between non-Hedanitesonators.
Our theory has the strength of studying non-Hermitian @ptgystems
with inclusion of the full vector fields, thus is useful to dyuand design
non-Hermitian devices that support asymmetric and everrengrocal
light propagations.

© 2015 Optical Society of America

OCIS codes: (240.6680) bianisotropic medium; (230.7370) chirowavegs; (230.6080)
metamaterials.

Referencesand links

1.

2.

3.
4.

2]

10.
11.

S. A. Schelkunoff, “Conversion of Maxwell’s equationgargeneralized telegraphist’'s equations,” Bell Syst.
Tech. J. 34, 995-1043 (1955).

H. A. Haus, “Electron beam waves in microwave tubes,” P&yenp. Electronic Waveguides, Polytechnic Inst.
of Brooklyn, NY, 1958.

W. H. Louisell,Coupled-Mode and Parametric Electronics (Wiley, 1960).

D. Marcuse, “The coupling of degenerate modes in two [ehrdikelectric waveguides,” Bell Syst. Tech.5D,
1791-1816 (1971).

. A. W. Snyder, “Coupled-mode theory for optical fibers,"Opt. Soc. Am62, 1267-1277 (1972).
. A. Yariv, “Coupled-mode theory for guided-wave optics,Quantum Electror®, 919-933 (1973).
. A. Hardy, and W. Streifer, “Coupled mode theory of patallaveguides,” J. Lightwave Techn@, 1135-1146

(1985).

. H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, U@led-mode theory of optical waveguides,” J.

Lightw. Technol .5, 16-23 (1987).

. S. L. Chuang, “A coupled mode formulation by reciprocihda variation principle,” J. Lightwave Technd,

5-15 (1987).

W. Huang, “Coupled-mode theory for optical waveguidesoverview,” J. Opt. Soc. Am. Al, 963-983 (1994).
S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, M. JnK&a Manolatou, and H. A. Haus, “Theoretical
analysis of channel drop tunneling processes,” Phys. R&9, B5882-15892 (1999).


http://arxiv.org/abs/1506.04224v3

12. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theorynalysis of waveguide-resonator coupling,” Phys. Rev.
E 62, 7389-7404 (2000).

13. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal couptete theory for the Fano resonance in optical
resonators,” J. Opt. Soc. Am. 2, 569-572 (2003).

14. A. D. Berk, “Variational principles for electromagretiesonators and waveguides,” IRE IEEE Trans. Antennas
Propag4, 104-111 (1956).

15. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and# Musslimani, “Theory of coupled optical’.7 -
symmetric structures,” Opt. Lett32, 2632-2634 (2007).

16. S. Klaiman, U. Gunther, and N. Moiseyev, “Visualizatiohbranch points in%?.7 -symmetric waveguides,”
Phys. Rev. Lett101, 080402 (2008).

17. L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Olive, V. R. Almeida, Y.-F. Chen and A. Scherer,
“Experimental demonstration of a unidirectional reflectéss parity-time metamaterial at optical frequencies,”
Nature materl2, 108-113 (2013).

18. X.Zhu, H. Ramezani, C. Shi, J. Zhu, and X. Zhang,.7 -symmetric acoustics,” Phys. Rev.4{031042 (2014).

19. Z.Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Caogddh N. Christodoulides, “Unidirectional invisibility
induced byZ.7-symmetric periodic structures,” Phys. Rev. L&@6, 213901 (2011).

20. Y. Shi, Z. Yuand S. Fan, “Limitations of nonlinear optielators due to dynamic reciprocity,” Nature Photon.
9, 388-392 (2015).

21. C. E. Ruter, K. G. Makris, R. EI-Ganainy, D. N. Christotides, M. Segev and D. Kip, “Observation of parity-
time symmetry in optics,” Nature Phy8, 192-195 (2010).

22. H.Hodaei, M.-A. Miri, M. Heinrich,D. N. Christodoulide M. Khajavikhan, “Parity-time -symmetric microring
lasers,” Scienc&46, 975-978 (2014).

23. H. Alaeian, and J. A. Dionne, “Non-Hermitian nanophatoand plasmonic waveguides,” Phys. Rev88
075136 (2014).

24. H. Alaeian and J. A. Dionne, “Parity-time-symmetric gofeonic metamaterials,” Phys. Rev. 89, 033829
(2014).

25. Y. Shen, X. H. Deng, and L. Chen, “Unidirectional inviitp in a two-layer non-PT-symmetric slab,” Opt.
Express22, 19440-19447 (2014).

26. V. H. Rumsey, “Reaction concept in electromagnetic iyeBhys. Rev94, 1483-1491 (1954).

27. B. FriedmanPrinciples and Techniques of Applied Mathematics (John Wiley & Sons, 1962).

28. C. H. Chen, and C.-D. Lien, “The variational principles hon-self-adjoint electromagnetic problems,” IEEE
Trans. Microwave Theory Tech28, 878-886 (1980).

29. A. E. Siegmanl asers (University Science Books, 1986).

30. P. Pintus, “Accurate vectorial finite element mode sofee magneto-opti and anisotropic waveguides,” Opt.
Express22, 15737-15756 (2014).

31. R.F. HarringtonTime-Harmonic Electromagnetic Fields, 2rd (Wiley-IEEE, 2001).

32. G. Zhu, “Pseudo-hermitian hamitonian formalism of &mnagnetic wave propagation in a dielectric medium-
application to nonorthogonal coupled-mode theory,” Jhhig Technol.29, 905-911 (2011).

33. J. Xu, B. Wu and Y. Chen, “Elimination of polarization @egracy in circularly symmetric bianisotropic waveg-
uides: a decoupled case,” Opt. Expré8s11566-11575 (2015).

1. Introduction

Coupled mode theory (CMT) can be traced back to 3 decadesIjgand has been an in-
dispensable tool of analyzing and designing waveguidesn@ors, couplers or many other
devices from microwave frequendy [2-4] to optical frequefi13], in both time and space
domain. CMT has its mathematical root of variational piitei[14], which yields a stationary
value for target physical quantities of the coupled optsyatems, such as propagation constant,
eigen-frequencies, or impedance and so on. CMT was invéatstddy parametric amplifiers,
oscillators, and frequency converters in microwaves [3{ha rigorous derivation given by
Schelkunoff using mode expansian [1], and Haus using atiamial principle [2]. The CMT
for optical waveguides was developed by many authdrs| [4+&],further refined by Hardy et
al., using non-orthogonal coupled mode formulation (NCNIZH9], in contrast to the orthog-
onal coupled mode theory (OCMT). Subsequently, tempomgblesn mode theory was applied
to study coupling among optical resonators, or resonatarpled to waveguides [11-13].

It can be proved that CMT is exactly equivalent to Maxwellgiations, as long as a com-
plete set of modes is taken in the mode expansion in constgutte coupled mode equations.
In most cases, we only need a few modes (usually two) in theeneagansion, because all



the other modes, for instance, the continuum modes in wadegudo not couple to the tar-
get mode that we are interested in. Even though CMT remaipsajmate in the truncated
mode set, yet insightful and often accurate descriptioragfet quantities of a coupled sys-
tem can be obtained. By excluding those irrelevant modesT @ a two-modes structure
can be reduced into a form o&2 matrix, which is a classic model and has been extensively
used in describing many different coupled physical systesmsh as two coupled mechanical
oscillators, light (single-mode ) matter (single atom)naiction in Jaynes-Cummings model,
two coupled resonators in electric circuits and so on. Mo#&ir a lossless system, the energy
flow from one mode/oscillator/atom to another mode/odaitlahoton is reciprocal, namely,
the energy will flow back in a reciprocal’ way as 'time’ is ressed, which renders the coupled
system Hermitian, or the transition matrix of the couplestsyn as a Hermitian Matrix.

The aforementioned formulations of CMT rely on a definite andserved optical power of
the whole coupled system for either OCMT or NCMT, which esisdig by default selects a
scheme of complex inner product. However, for coupled apparity-time (22 7)-symmetric
structures([15=25] the total integrated power is not a coeskquantity, especially in the bro-
ken phase after the exceptional point. Therefore, the at@f@dMT fails in such non-Hermitian
systems|[[15]. In[[15], the authors formulate a CMT to studyi#?.7-symmetric structures
through a Lagrangian treatment, in which the vector opfield is approximate as a scalar field
envelope. In this work, we provide a conceptually simple eidd construct general coupled
mode theory (GCMT) using reaction conservation, a wellvkmgoncept in electromagnetism.
The GCMT is capable of capturing the vectorial nature of thecal fields. Particularly, us-
ing a scalar inner product, we prove that the Maxwell equatéonains self-adjoint, even in the
presence of loss and gain. We further construct GCMT baseeédarbation. In the application
of GCMT, we studyZ” .7 -symmetric waveguides with balanced losses and gain. Tédigr
tion of our theory shows excellent agreement with resultaiakd by the fullwave simulation
(COMSOL).

The paper is organized as follows. In Section 2, we give thadation of our general coupled
theory based on reaction concept. Secondly, we discussaledgures of constructing GCMT.
In Section 3, we study the mode dispersionf7 -symmetric waveguides using GCMT, and
compare it with conventional coupled mode theory. Fin@kgction 4 concludes the paper.

2. General couple modetheory
2.1. Reaction concept and self-adjointness

The reaction is a physical observable introduced by Runi@éjytp measure the reaction be-
tween source$,; andS,, defined as follows,

(Fp,Sa) = (Fp,00) 1)

whereFy, is the field generated by sour&. As seen from Eq[{1), the inner-prodyet) is
defined for the vector field, and equdle-), where (@(r)|@(r)) = [dre' (r)g(r) for two
column vector fieldsp(r), g (r). It is important to point out that there is no complex conjega
operation over the fields, therefore the relati@ir)|g(r)) = (@(r)|@(r)) holds. Denoting
the fieldF = [E,H]", andS= [J,M]", J (M) electric (magnetic) current density. The reaction
given in Eq.[(1) can be explicitly given by

J
(FuS) = [ar[ Es HyJo| o | @
where the metric tensar = :‘—) _OI , 1 denotes the identity matri@ the zero matrix.

The link between the sourc®and the associated vector fielBsis given by the Maxwell’s



equations,

LF =WS ®3)
— / Ox kg, \ & (0 -1
WhereL_< _ikoE, Ox ),W_( 1 0 )
Based on the reaction concept, the reciprocity theorem eaimMen
(Fa, S)) = (&.a Fb)’ (4)

which states that the response of one source to the exteefdilifiduced by another source
equals to the response of the second source to the field gyverelirst source. Equatiohl(4)
imposes certain constraints on the material parameteris@s loy £, (r) = &' (r) and, (r) =
g/ (r). Such medium is called reciprocal medium in the literatare] could be lossy or active,
as long as reciprocal conditions are fulfilled. We can refdate Eq.[(B) in a matrix form as
follows, _

HF =§ (5)

whereH =W L. For any reciprocal medium, we find that for any two vectodap, @, the
following relation holds: _ _

(@, Ho)=(Hy, 9). (6)
Equation[[6) means that the operaltbis self-adjoint in the scheme of the inner-product given
by Eq. [1), which has relevant consequences and implicatheat we intend to discuss. Firstly,
the self-adjointness of the operatdrand the reaction for defining reciprocity share the same
definition on the inner-product. Moreover, the self-adjo@ss o is equivalent to reciprocity
theorem. In other words, the reciprocal conditions on théenal parameters are necessary
and sufficient condition both to self-adjointnesdhfand to reciprocity theorem. Secondly, the
self-adjointness of the Hamiltonidh guarantees that the underlying space associated with the
operatoH is complete, despite the existence of losses or gain in therragparameters. Lastly,
the left eigenvector space (bra spdeg and the right eigenvector space (ket spageare
closely related with each other for self-adjoint operd®f][ namely, one determines the other,
and vice versa. For complex inner-product, the self-adjoperator is conventionally called
as Hermitian operator. The matrix form of right and left eigectors are complex conjugate
and transpose to each other, ile.= [((-|)T]*. As for a scalar inner-product, the matrix form
of self-adjoint operator is symmetric, hence the left agghtrieigenvectors has the relation of

)= (DT

2.2. Dimension reduction: a non self-adjoint formulation for waveguide problems based on
variational principles

It is important to realize that the self-adjointness of thexMell’'s equations in reciprocal
medium, as given in Eq[X6), is valid for the inner-productimied in 3D space. As for the
development of GCMT or the modal solver based on variatipriatiple for waveguide prob-
lems, it is necessary to reduce the 3D formulation into itsc@Dnterpart.

Considering an infinitely long waveguide, the waveguide esodf the original problem
are given by = [e(r),h(r)]", wheree(r) = e(x,y, 8)€(“P2, h(r) = h(x,y,3)e(-F2),
The adjoint fields are given by = [€2(r),h?(r)]T, where€?(r) = €*(x,y)e(“+F2) h(r) =
h?(x,y)eé(“+P2 We choose counter-propagating modes with the sfnas our mode sets
@ = [e",h"]T@B) and g = [e,h |Te(@+P2 respectively. The relation between the
fields propagating in+z and —z direction is given bye" = {e,,gy,e,}, h* = {hy,hy,h;},

e = {e.e,—&}, h™ = {—hy,—hy,h;}. The particular choice of the mode sets|[28-31] is
relevant: (1) it is necessary to get a functional of coupled es that is independentpfmean-
ing the terms*'#Z in the inner-product between the modes ggtnd are canceled; (2) the



mode pair of counter-propagating modes has a definite oaldtiencep can be deduced from
Y, and vice versa. It is easy to get tkéndependent and source-free wave-equation for the
mode profilesp,, = [€", h*] of the original problem as follows

ﬁ2d Py=0 (7)

- [ Ogx—ipzx ikoH, Y A - - —
where Hyy = ( ikoE, Oox —iBzx ) and &} = g2 gz ) and pp =

tt tz

( Zrz 5&2 ) ande!' (ut') denotes the & 2 in-plane components of electric (magnetic) di-
r r

electric function[J; = x% +yl;7—y. From Eq.[7), and the predefined modegaindy, one can

also obtain the adjoint system from the original orldsy), as given by

H5qWoq =0 ®)

e ho1 md [ Oex+iBzx ikou? [ &t g2
Wherede - [e 1h ]! sz - ( —lkOE? Dt X +|BZX ’ er - —Sth Srzz y and

tt iz
pé = < “[Jzt Jg > Itis easy to find that the following relation holds
—Hr r

(W2a,Haa@2q) = 0= (HogWoq, @2g). (9)

where the inner-product is carried out over 2D computatidoenain, i.e., transverse plane of
the waveguides. As regards to the comparison between 2Dufariqg. [9)) and 3D formula
(Eq. (@)), a few remarks may deserve attentions. Firstly,aperatoH,q with inner product
defined over 2D domain is not self-adjoint [30+-32], ekfz‘d =+ Hygq, for reciprocal medium.
Secondly, for self-adjoint system, the adjoint system dreldriginal system can be treated
separately. As for a non self-adjoint electromagnetic [@ob[28], one need to solve original
problem, as well as its adjoint problem simultaneously twvjgte a complete but biorthogonal
mode sets to construct the coupled mode equations, or ary wibdal solver based on vari-
ational principles, e.g., method of moments (MoM) and fielkement method (FEM). As for
Eqg. (9), it is necessary to obtain a unified variational fonatt ttontains contribution from both
H3$, andHy4. The explicit unified variational form for eigen-mode preivl of waveguides is
the following,

Y = (4. Haa@sq) + (H3gWoa, 5@,4) = O. (10)

which is the first variation, e.gd/,q andd@,y, to the functional = (o4, H2q@,4). Accord-
ing to variational principle, Eq[{10) indicates simultansly the optimal solution ofs,4 and
.4 to Eq. [7) and Eq[{8), as long as the functiohil stationary for any,4 and@,y. Thirdly,
the mode sety,) of the adjoint system is selected as the countering prdjpapaodes of the
original system @,4). As such, the total degree of freedom of unknows is halveil }&e note
that GCMT can also be applied to bianisotropic waveguid8g [3

2.3. Procedures of constructing GCMT for waveguide problem based on perturbation

Given a perturbation to the adjoint systé#f; by AH, i.e., H3q = H34 + AH, we shall have
the relation according to linear response of Maxwell’s eipus, (o4, HogPyoq) = ([H# -
AHP,y, @,4), which can be reformulated as

(Wag, Hoa@s9) — (HgWag, @) = (—OH W, @y). (11)



Perturbation implies thadH is small, hence{—AI-_H[J,tp) can be approximately taken as 0,
which leads to

(Wag, H2a@zq) — (HagWaq, @q) = O. (12)

Equation[(IR) gives the connection between the originakesysand the perturbed adjoint sys-
tem via the reaction conversation under a small perturbdtid, and can be transcribed into a
set of coupled mode equations, which is essentially the G@kbposed in this paper. Firstly,
we use normalized fielda(r) = et€(“@ B2 h(r) = h"&(“~P2) propagating in the-z direc-
tion, satisfying Maxwell equations

Ot x &5 — iBoizx &; = —ikoH?hg;, (13a)

Ot x hg; —iBoizx hi; = ikogley;, (13b)
where the subscripts 0 andtand for no perturbation case and mode labels, respactivel
We consider there is a small perturbatioreoThe idea is that the fields under perturbed sys-

tem can be approximated by a linear combination of the ungeated fields of the adjoint sys-
tems. Therefore, the fields of perturbed system could beenrase/ (r) = (Zjajeaj)e'(‘*”ﬁz),

h(r)=(Zq h&j)é(‘*’”ﬁz) and satisfy
Dtxzjajeaj+iﬁz>< Zjajeaj:—ikoﬁrzjajhaj, (14a)
DtXZjajhaj—i—iBZX Zjajhaj:ikoEijajeaj, (14b)
In equivalence with Eq[{12), we derive GCMT from perturbatas follows,

J[{Ea. @) zjajhy; ~ Eq. @) - + Eq. (@) a6, — Eq. () - hf; oy (15)

In case that a small perturbation is present in the imagiparyof&,, i.e. & = €0 +iAg(x,y),
the formula resulted from Ed._(IL5) can be simplified as folpw

Zjajlkij +bij —i(B — Boi)pij] =0 (16)

wherebij = [/{04 - (hg; > &) — Cr - (hgj x &) yxdy, pij = [f{z- (&) x hg;) —z- (€5, x
hy ;) tdxdy, kij = iko [f Ae(x,y)ey -e};dxdy. For Ag(x,y) = 0, we shall have the following
relation c

bij =i (Bo.j — Poi) Pij- 17)
Insertingb;j back into Eq.[(I6) yields
Zjaj(B — Boj) pij = Zjajkij. (18)

Equation [[IB) is the matrix form of GCMT proposed in this papédich will be used to study
Hermitian and non-Hermitian waveguide with some concrederles in the following section.
It is worthy to write down the CMT derived from conventionai@ (CCMT) [8] for com-

parison. To this end, Eq.(IL2) shall be reformulated as
* g i *
(P24, HPoq) — (H WP2g)", @) =0, (19)
wherex indicates the operation of complex conjugation, and theimggnsor is modified as

o= < (]—)' g_—) > accordingly. Following the same procedure, we have

Zjaj(B* — Bo,j)pij = Zjajkij. (20)
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Fig. 1. Real part and imaginary part of effective mode insliog; ) versusiAe using GCMT
(a,b) and CCMT (c,d). Gray solid lines are calculated froliwfave simulation. Inset shows
the schematic diagram of two coupled core layers with lossgain, surrounded by air.
Dimensions ardén = 0.2Ag, w = 0.3Ag, d = 0.03A¢ (blue solid circles, green open circles)
or 0.05)¢ (red diamonds, magenta crosseg)= 10. Ag is vacuum wavelength.

wherebyj = [T {0 - (g x &) + O~ (g x &) yabxdy, pyj = [ (- (&5, x hg;) +2- (&5, x
hg j)tdxdy, kij = iko [f Ae(x,y)€; - €5;dxdy. In this case, forde(xy) = O, bjj + fij =

(s~ Boi ) pij wherefij = —iko [ {(Hro-+ Hyg I -1y + (Ero-+ £]5 )& -6 habxdly. We wil
show in the next section that, CCMT works fine for Hermitiarveguides, but not for the case
where non-Hermitian waveguides are considered.

3. Resultsand Discussions

In the following, we use Eq.[(18) to analyze dispersion iefat in 2.7 -symmetric waveg-
uides as discussed in [15]/16]. The structure®f” -symmetric waveguides is shown by the
inset of Fig[1. It is composed of two waveguides with idesitigeometry dimensions placed
close to each other. It is well known that the pair of an eveth@atd super mode is formed in
this case. Phase transitions can be observed as the magoiti imaginary part of, of two
waveguides, i.eg; = & o-+iA¢ in core layer 1 and, = & o —iA¢ in core layer 2, crosses a crit-
ical value as shown by the inset. This is used to create a symerimelex guiding profile and an
anti-symmetric gain-loss profile. The gain/loss pertudratreates coupling between the odd
and even mode pair so that the effective index of the two snpdes becomes closer and closer
until an exceptional point where they become identical.@elthe exceptional point, the real
part of ngr¢ remains the same, but the imaginary paringf; of two modes break into two
branches. When two waveguides are put more closer, the nodde® waveguides coupled
more intensely so the even and odd supermodes have larggatep in the effective mode
index. Therefore, it needs larger gain/loss parametertitoghe exceptional point. These are
confirmed by COMSOL where two different gap size between tare tayers are considered,
as shown by the gray lines of F[g. 1.

Then we apply our theory to predict the dispersion curveh@fbove mentioned structures.
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Fig. 2. Real part ohets versusAe. Gray solid lines are calculated from fullwave sim-
ulations. Blue open circles (red crosses) represent sesigitived by GCMT(CCMT).
d = 0.03Aq. Other parameters are the same as Elg. 1.

In this case, Eq[({18) is an eigenvalue problem with the ¥ailig form

BoaPir—ikir  Bo2p12—ikiz ] { a ] :B[ P11 P12 ] { a ] (21)
BoaP21—ikor PozPz—ikez | | & P21 P22 | | &
wherep;; andk;; are defined in previous section. As a starting point, we usertbde fields
provided by COMSOL af\e = 0. Propagation constants as well as eigenvectors are wpdate
according to Eq.[{21) using mode fields at this point. Nexiplame fields are recalculated
using updated eigenvectors and used for deriving propamgatinstants as well as eigenvectors
in the next step. By choosing a small step, full dispersidatias as a function af\¢ can
be resolved. The solid symbols in F[g. 1(a) add 1(b) showceffe mode indices given by
Nett = /ko derived by our method, where they match results from COMS@hnarkably
well. For comparison, we also show the results obtained bMT® Fig.[D(c) anddL(d). In this
case Eq[(21) becomes

Bg P11 — ikt Biizplz—iklz] { a ] —B*{ Pu Pr2 ] { & ] (22)

Bo1P21—iko1 Bgop2a—ika2 | | & P21 P22 | | @

It is clear that in this case CCMT fails to capture the majatdee of. %2 .7 -symmetric waveg-
uides. However, instead of perturbiggin the imaginary part, CCMT works fine for the case
wheng, is present the real part. Red crosses in Hii. 2(a) shows #eetbatAs is real and
increases with identical sign in both core layers. In thsegéhe separation between two mode
indices remain the same but their absolute values increadesincreases. Red crosses in Fig.
[2(b) shows the case thAE is real but increases with opposite sign in two core layershis
case, two mode indices are further separatefsascreases, indicating anti-crossing features.
In both figures, only real part ok ¢ is shown since imaginary part os ¢ in all cases is zero.
Dispersion relations calculated according to GCMT are alsmwn in Fig.[2 with blue open
circles. Clearly, GCMT developed in this work gives the sapmilts as CCMT does, agreeing
well with full wave simulations given by gray lines shown iigF[2.



4. Conclusions

From reaction conservation, we provide a solid foundattorifie construction of general cou-
ple mode theory that can handle mode hybridization in nomtitean waveguides. Using a
scalar inner product, we establish the equivalence betweerelf-adjointness of Maxwell's
equations and reaction conservation. As for waveguidelpnody the dimension of the self-
adjoint relation need to be reduced from 3D to 2D, in whichfirenula turns out be non self-
adjoint problem. Using coutering-propagating modes asltia space of 2D non self-adjoint
waveguide problem, the eigenmodes can be resolved froratiaral principles. Importantly,
the 2D non self-adjoint relation can be elaborated into aksebupled mode equation. We give
a detailed discussion of the dimensional reduction for \gaige problem that relies on vari-
ational principle. We then provide a procedure of consingcGCMT for waveguide problem
based on perturbation, which yields a set a coupled modetiegaaTo illustrate the effec-
tiveness of GCMT developed in this work, it is applied to sttite phase transition of coupled
2 .7 -symmetric structures and shows excellent agreement ulithdve simulations. For com-
parison, results derived from CCMT are also shown, whicls tai capture the major features
of &7 -waveguides. Our theory provide direct analysis of eigkres of &2.7-symmetric
structures with in-cooperation of full vector fields. Thusight be useful to study and design
non-Hermitian devices that support asymmetric and evenewiprocal light propagation.
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