1. Zhang, L., Qin, Y., & Chen, M. (2025). Flavivirus NS2A orchestrates reticulophagy to enhance viral pathogenicity. Autophagy, 1-2. https://doi.org/10.1080/15548627.2025.2457112
2. Zhou, S., Hui, X., Wang, W., Zhao, C., Jin, M., Qin, Y., & Chen, M. (2025). SARS-CoV-2 and HCoV-OC43 regulate host m6A modification via activation of the mTORC1 signalling pathway to facilitate viral replication. Emerging Microbes & Infections, 14(1). https://doi.org/10.1080/22221751.2024.2447620
3. Jin, D., Zhang, L., Peng, C., He, M., Wang, W., Li, Z., Liu, C., Du, J., Zhou, J., Yin, L., Shan, C., Qin, Y., & Chen, M. (2024). The E3 ligase RAD18-mediated ubiquitination of henipavirus matrix protein promotes its nuclear-cytoplasmic trafficking and viral egress. Emerging Microbes & Infections, 14(1). https://doi.org/10.1080/22221751.2024.2432344
4. Zhang, L., Wang, H., Han, C., Dong, Q., Yan, J., Guo, W., Shan, C., Zhao, W., Chen, P., Huang, R., Wu, Y., Chen, Y., Qin, Y., & Chen, M. (2024). AMFR-mediated Flavivirus NS2A ubiquitination subverts ER-phagy to augment viral pathogenicity. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-54010-w
5. Wu, X., Zhang, L., Liu, C., Cheng, Q., Zhao, W., Chen, P., Qin, Y., & Chen, M. (2024). The NS2B-PP1α-eIF2α axis: Inhibiting stress granule formation and Boosting Zika virus replication. PLOS Pathogens, 20(6). https://doi.org/10.1371/journal.ppat.1012355
6. Han, Y., Zhou, H., Liu, C., Wang, W., Qin, Y., & Chen, M. (2024). SARS-CoV-2 N protein coordinates viral particle assembly through multiple domains. J Virol, 98(11), e0103624. https://doi.org/10.1128/jvi.01036-24
7. Zhang, Q., Ye, H., Liu, C., Zhou, H., He, M., Liang, X., Zhou, Y., Wang, K., Qin, Y., Li, Z., & Chen, M. (2023). PABP-driven secondary condensed phase within RSV inclusion bodies activates viral mRNAs for ribosomal recruitment. Virol Sin, 39(2), 235-250. https://doi.org/10.1016/j.virs.2023.12.001
8. Li, Z., Zheng, M., He, Z., Qin, Y., & Chen, M. (2023). Morphogenesis and functional organization of viral inclusion bodies. Cell Insight, 2(3). https://doi.org/10.1016/j.cellin.2023.100103
9. Liu P, Zhang S, Ma J, Jin D, Qin Y*, Chen M*. Vimentin inhibits α-tubulin acetylation via enhancing α-TAT1 degradation to suppress the replication of human parainfluenza virus type 3. PLoS Pathog. 2022. 18(9): e1010856. https://doi.org/ 10.1371/journal.ppat.1010856
10. Guo D, Yu X, Wang D, Li Z, Zhou Y, Xu G, Yuan B, Qin Y*, Chen M*. SLC35B2 acts as a dual role in the host sulfation required for EV71 infection. Journal of Virology. 2022 May 11;96(9): e0204221.doi: 10.1128/jvi.02042-21.
11. Fan S, Xu Z, Liu P, Qin Y*, Chen M*. Enterovirus 71 2A protease inhibits P-Body formation to promote viral RNA synthesis J Virol. 2021 Sep 9; 95(19): e0092221.
12. Zhang L, Zhou S, Chen M, Yan J, Yang Y, Wu L, Jin D, Yin L, Chen M*, Qin Y*. P300-mediated NEDD4 acetylation drives ebolavirus VP40 egress by enhancing NEDD4 ligase activity. PLoS Pathogens. 2021 Jun 10;17(6): e1009616. doi: 10.1371/journal.ppat.1009616. eCollection 2021 Jun.
13. Hui X#, Zhang L#, Cao L, Huang K, Zhao Y, Zhang Y, Chen X, Lin X*, Chen M*, Jin M*. SARS-CoV-2 promote autophagy to suppress type I interferon response. Signal Transduct Target Ther. 2021 May 8;6(1):180. doi: 10.1038/s41392-021-00574-8.
14. Cheng, Q., Huai, W., Wu, X., & Chen, M. (2020). Sumoylation of Human Parainfluenza Virus Type 3 Phosphoprotein Correlates with A Reduction in Viral Replication. Virologica Sinica, 36(3), 438-448. https://doi.org/10.1007/s12250-020-00314-2
15. Wu L, Jin D, Wang D, Jing X, Gong P, Qin Y*, Chen M*. The two-stage interaction of Ebola virus VP40 with nucleoprotein results in a switch from viral RNA synthesis to virion assembly/budding. Protein Cell. 2022 2022 Feb;13(2):120-140. doi: 10.1007/s13238-020-00764-0.
16. Li Z, Guo D, Qin Y*, Chen M*. PI4KB on inclusion bodies formed by ER membrane remodeling facilitates replication of human parainfluenza virus type 3. Cell Reports. 2019. 29(8):2229-2242. https://doi.org/10.1016/j.celrep.2019.10.052
17. Zhang Q#, Sharma N#, Zheng Z*, Chen M*. Viral Regulation of RNA Granules in Infected Cells. Virol Sin. 2019 Apr;34(2):175-191.
18. Tang Q, Liu P, Chen M*, Qin Y*. 2019. Virion-Associated Cholesterol Regulates the Infection of Human Parainfluenza Virus Type 3. Viruses. May 15;11(5).
19. Yang X, Hu Z, Zhang Q, Fan S, Zhong Y, Guo D, Qin Y, Chen M*. 2019. SG formation relies on eIF4GI-G3BP interaction which is targeted by picornavirus stress antagonists. Cell Discov. eCollection.
12. Zhang L, Qin Y, Chen M*. 2018. Viral strategies for triggering and manipulating mitophagy. Autophagy. 14(10):1665-1673.
13. Zhang S#, Cheng Q#, Luo C, Qin Y*, Chen M*. 2018. Human Parainfluenza Virus Type 3 Matrix Protein Reduces Viral RNA Synthesis of HPIV3 by Regulating Inclusion Body Formation. Viruses. 11;10(3).
14. Hu Z, Wang Y, Tang Q, Yang X, Qin Y, Chen M*. 2018. Inclusion bodies of human parainfluenza virus type 3 inhibit antiviral stress granule formation by shielding viral RNAs. PLoS Pathog 14(3): e1006948.
15. Yang X, Hu Z, Fan S, Zhang Q, Zhong Y, Guo D, Qin Y, Chen M*. 2018 Picornavirus 2A protease regulates stress granule formation to facilitate viral translation. PLoS Pathog 14(2): e1006901. https://doi.org/10.1371/journal.ppat.1006901.
16. Zhang S#, Cheng Q#, Luo C, Yin L, Qin Y*, Chen M*. 2018. An alanine residue in human parainfluenza virus type 3 phosphoprotein is critical for restricting excessive N0-P interaction and maintaining N solubility. Virology. 518:64-76.
17. Ding B#, Zhang L#, Li Z, Zhong Y, Tang Q, Qin Y, Chen M*. 2017. The Matrix Protein of Human Parainfluenza Virus Type 3 Induces Mitophagy that Suppresses Interferon Responses. Cell Host & Microbe. 21(4):538-547.https://doi.org/10.1016/j.chom.2017.03.004
18. Zhang S#, Jiang Y#, Cheng Q, Zhong Y, Qin Y, Chen M*. 2017. Inclusion body fusion of human parainfluenza virus type 3 regulated by acetylated α-tubulin enhances viral replication. Journal of Virology. 91(3). pii: e01802-16.
19. Jiang Y, Qin Y*, Chen M*. 2016. Host-Pathogen Interactions in Measles Virus Replication and Anti-Viral Immunity. Viruses, 8 (11), E308 (Invited review).
20. Yan Q#, Wu L#, Chen L, Qin Y*, Pan Z*, Chen M*. 2016. Vesicular stomatitis virus-based vaccines expressing EV71 virus-like particles elicit strong immune responses and protect newborn mice from lethal challenges. Vaccine. 34:4196-4204.
21. Zhang G#, Zhong Y#, Qin Y, Chen M*. 2015. Interaction of Human Parainfluenza Virus Type 3 Nucleoprotein with Matrix Protein Mediates Internal Viral Protein Assembly. Journal of Virology. 90(5):2306-2315.
22. Ding B, Qin Y, Chen M*. 2016. Nucleocapsid proteins: roles beyond viral RNA packaging. WIREs RNA. 7(2):213-226. (Invited review).
23. Chen L, Zhong Y, Hu Z, Qin Y. Chen M. Chen M*. 2016. Two second-site mutations compensate the engineered mutation of R7A in vesicular stomatitis virus nucleocapsid protein. Virus Research, 214:59-64.
24. Chen L#, Yan Q#, Lu G, Hu Z, Zhang G, Zhang S, Ding B, Jiang Y, Zhong Y, Gong P, Chen M*. 2015. Several residues within the N-terminal arm of vesicular stomatitis virus nucleoprotein play a critical role in protecting viral RNA from nuclease digestion. Virology.478:9-17.
25. Ding B, Zhang G, Yang X, Zhang S, Chen L, Yan Q, Xu M, Banerjee AK, Chen M*. 2014. Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome-lysosome fusion to increase virus production. Cell Host & Microbe.15(5):564-577.
26. Zhang G, Zhang S, Ding B, Yang X, Chen L, Yan Q, Jiang Y, Zhong Y, Chen M*. 2014. A Leucine Residue in C-terminus of Human Parainfluenza Virus Type 3 Matrix Protein Is Essential for Efficient Virus-Like Particle and Virion Release. Journal of Virology. 88(22):13173-13188.
27. Zhang S, Chen L, Zhang G, Yan Q, Yang X, Ding B, Tang Q, Sun S, Hu Z, Chen M*. 2013. An amino acid of human parainfluenza virus type 3 nucleoprotein is critical for template function and cytoplasmic inclusion body formation. Journal of Virology. 87(22):12457-12470.
28. Chen L, Zhang S, Banerjee AK and Chen M*. 2013. N-Terminal Phosphorylation of Phosphoprotein of Vesicular Stomatitis Virus Is Required for Preventing Nucleoprotein from Binding to Cellular RNAs and for Functional Template Formation. Journal of Virology. 87(6):3177-3186.
29. Chen M, Ogino T, Banerjee AK*. 2007. Interaction of vesicular stomatitis virus P and N proteins: Identification of two overlapping domains at the N-terminus of P that are involved in N0-P complex formation and encapsidation of viral genome RNA. Journal of Virology. 81(24):13478-13485.
30. Chen M, Ogino T, Banerjee AK*. 2006. Mapping and functional role of the self-association domain of vesicular stomatitis virus phosphoprotein. Journal of Virology. 80(19): 9511-9518.
31. Chen M and Gerlier D*. 2006.Viral Hijacking of Cellular Ubiquitination Pathways as an Anti-Innate Immunity Strategy. Viral Immunology. 19(3): 349-362.
32. Chen M, Cortay JC, Logan IR, Sapountzi V, Robson CN, Gerlier D*. 2005. Inhibition of ubiquitination and stabilization of human ubiquitin E3 ligase PIRH2 by measles virus phosphoprotein. Journal of Virology. 79(18): 11824-11836.